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Abstract—The Internet of Things (IoT) is the latest Internet
evolution that interconnects billions of devices, such as cameras,
sensors, RFIDs, smart phones, wearable devices, ODBII dongles,
etc. Federations of such IoT devices (or things) provides the
information needed to solve many important problems that have
been too difficult to harness before. Despite these great benefits,
privacy in IoT remains a great concern, in particular when
the number of things increases. This presses the need for the
development of highly scalable and computationally efficient
mechanisms to prevent unauthorised access and disclosure of
sensitive information generated by things. In this paper, we
address this need by proposing a lightweight, yet highly scalable,
data obfuscation technique. For this purpose, a digital water-
marking technique is used to control perturbation of sensitive
data that enables legitimate users to de-obfuscate perturbed data.
To enhance the scalability of our solution, we also introduce
a contextualisation service that achieve real-time aggregation
and filtering of IoT data for large number of designated users.
We, then, assess the effectiveness of the proposed technique by
considering a health-care scenario that involves data streamed
from various wearable and stationary sensors capturing health
data, such as heart-rate and blood pressure. An analysis of the
experimental results that illustrate the unconstrained scalability
of our technique concludes the paper.

I. INTRODUCTION

The IoT is fuelling a paradigm shift of a connected world
in which everyday objects become interconnected and smart.
While IoT supports a vast array of applications across a
variety of domains [1], some of the data collected by IoT are
sensitive and must be kept private. Examples of sensitive IoT
data are physiological data collected by wearable or attached
biomedical sensors or location data collected by GPS and
mobile phones. Disclosure of such data creates opportunities
for criminal activity, and can result in serious harm or even
death. Thus, despite its benefits, IoT presents a significant
challenge to security and privacy, which is exacerbated by the
unprecedented scale of devices [2]. Traditionally, such security
issues are addressed with the aid of encryption techniques.
However, IoT devices are extremely limited in computational
power and memory resources and therefore those techniques
cannot be applied [3].

To address the mentioned issue, in this paper, we pro-
pose a novel obfuscation technique for IoT data that uses a
combination of lightweight digital watermarking and scalable
contextualisation. Digital watermarking is the practice of em-
bedding extra information within digital content itself, which
is also called host data, in a matter that does not interfere
with the normal usage of host data [4]. Such techniques have
been mainly used for digital right management of multimedia
content. Our watermarking technique perturbs the sensitive
data more or less depending on the disclosure privileges of
the data requester. Therefore, better/more obfuscation can be
provided for more sensitive data by increasing the intensity of
the watermark. To the best of our knowledge, a little research,
if any, has been conducted for perturbing sensitive IoT data
using digital watermarking. In contrast to many other data
obfuscation techniques, such as those described in [5] and
[6], our obfuscation technique is reversible only by the au-
thenticated users having the appropriate disclosure privilege(s).
Since there is no information loss, in our approach, data
can be freely modified and retrieved repeatedly having the
right obfuscating parameters. In this regard, our technique is
reminiscent of a role-based access control whereby only users
who have matching roles can access the target data [5].

Another innovation included in this paper involves com-
bining this watermarking technique with a highly scalable
technique for contextualisation called ConTaaS [7]. ConTaaS-
based contextualisation excludes irrelevant data from consider-
ation and reduces data volume in large-scale IoT data manage-
ment and analysis applications. This contextualisation-driven
data reduction improves the scalability and performance of
implementing security and privacy-preserving mechanisms in
an IoT setting. Moreover, it reduces the amount of computation
(often referred to as reasoning) required to understand and
measure the corresponding privilege level for accessing each
particular data point.

The main contributions of this paper include the following:
• Introducing a novel data obfuscation technique that com-

bines contextualisation with digital watermarking based
on the disclosure privilege of matching roles,



Fig. 1. Conceptual Architecture.

• Proposing a new Security-As-a-Service model that
utilises this technique to govern access to IoT data (this
will be discussed further in latter sections),

• Illustrating the scalability of the proposed technique
by conducting an experimental evaluation for a health-
care scenario to manage privacy-preserving access having
1000 IoT users/applications.

The remainder of the paper organised as follows. In Section
II, we discuss related work. In Section III, we introduce our
Security-as-a-Service model followed by the proposed water-
mark construction and obfuscation/de-obfuscation techniques.
Section IV includes the description of a health-care use case
we use in our evaluation. Section V presents our evaluation
results. Finally, Section VI concludes the paper with future
research directions.

II. RELATED WORK AND BACKGROUND

There are several aspects of IoT that present security
and privacy problems including IoT device communications,
constrained resources (e.g. limited battery life), variety (e.g.
different types of devices made by multiple manufactures),
and the scale, i.e., billions of devices [8]. Among the plethora
of recent research solutions [9], [10], [11], [12], [13] for
protecting sensitive IoT data, some related research, e.g., in
[14], [9], [11], focuses on security and privacy preservation
policies while other related research, e.g., in [9], [10], [12],
[13], focuses on encryption and the design of privacy preserved
frameworks for IoT [15]. Although most of the these tech-
niques can ensure security and privacy, their ability to scale-up
for IoT devices and data has not been validated.

The scalability of privacy-preservation solutions is a grant
IoT challenge. The solution proposed in this paper couples
watermarking with contextualization to protect the privacy
of a virtually unlimited number of IoT data points. In the
following Sections we discuss further related work from the
perspective of privacy preservation, digital watermarking, and
contextualisation.

A. Related work
There are clear parallels between our proposed disclosure

technique and access control. The main purpose of access

control is to limit the actions or operations that a legitimate
user of a system can perform, whereas disclosure control aims
at publishing/sharing data such that the privacy of individuals
is not compromised. There has been a a considerable volume
of research on developing both access and disclosure control
methods. The summary of the most related ones to our
technique is given bellow.

The most common access control mechanisms are Discre-
tionary Access Control (DAC), Lattice-Based Access Control
(LBAC), and Role-based Access Control (RBAC) [16]. DAC
is discretionary in the sense that the owner of the requested
resource controls the access to that resource. Each access
request is checked against the specified authorizations. If there
exists an authorization stating that the user can access the
resource in the specific mode (read or write), the access is
granted, otherwise it is denied. LBAC enforces one-directional
information flow on the basis of a predefined lattice of security
labels which are associated with every resource and user in the
system. RBAC determines access level via the role abstraction,
rather than by just identity or clearance of the requester. In
this model, a role is a semantic construct which is often a
representation of a job in an organization.

In an IoT setting where both data and access control policies
dynamically change, the above access models are not suitable
to adopt these changes. In order to address such compliance
requirements, the next line of research enrich access polices
with contextual information. For instance, several extensions
to the basic RBAC model are purposed to incorporate con-
text variables such as Generalized RBAC (GRBAC) model
[17]. GRBAC introduces environmental information such as
temperature or location to activate roles based on the value
of conditions in the environment where the request has been
made. Likewise, a context-aware RBAC model was proposed
for health-care applications [18], whereby the contextual in-
formation invokes the relevant access policies for a specific
role. A major deficiency of these approach is that, data access
is either granted or denied. In contrast, our role-based model
is capable of granting multi-granularity access based on the
privileges associated with the roles.

In order to provide flexibility for situations where different



granularity is needed, disclosure control methods are advan-
tageous. We divide the existing disclosure control techniques
into two main classes of identity and data disclosure control.
The former techniques such as k-anonymity and l-diversity
or pseudonymity attempt to detach or replace identifiers from
data, whereas the latter techniques protect the data itself. We
only discuss the data disclose control techniques in this work.
A comprehensive review of the identity disclosure control
techniques can be found here [19].

The common techniques for data disclosure control in-
clude, but not limited to, generalisation and suppression, data
swapping, and noise addition. Data generalisation attempts
to prevent data linkage for privacy preservation of published
datasets. An example would be replacing the exact date of
birth by only the year. Suppression techniques can be viewed
as the ultimate generalisation since no information is released.
Unfortunately, these techniques cause information loss, and
also are not appropriate for real-time applications because of
the complexity of the required calculations.

Our technique for data disclosure control is similar to noise
addition techniques. For this purpose, we use digital water-
marking techniques to obfuscate sensitive data. In contrast
to the noise addition techniques, our technique is reversible
which enables us to tune the obfuscation parameters based on
the access privilege of the users.

B. Digital Watermarking

Digital watermarking is a proven technique in the multi-
media domain for copyright protection [4]. The watermark
constitutes a piece of secret information to be hidden within
the digital content in such a way that it is not visible to
the consumer. This requirement is called invisibility. Recently,
there has been an explosion in non-media applications of
digital watermarking among which are time-series, biological
sequences, graphs, spatial, spatio-temporal, and streaming data
[20]. In such applications, the watermark invisibility is no
longer defined by human perception characteristics and often
depends on specific application requirements. Since the focus
of this work is IoT that typically generates data streams,
we narrow down our attention to digital watermarking of
streaming data such as sensory data.

Spread Spectrum (SS) is a popular approach for digital
watermarking of sensory data, where a watermark is con-
structed as a random sequence that is imperceptibly inserted
in a spread-spectrum-like fashion into the data values. Such
sequences are often near-orthogonal codes of +1 and -1
symbols, and can be decoded through correlation between
code pairs. The security of the SS watermarking technique is
highly dependent to the spreading sequences. It is ideal to use
truly random sequences so that no one other than the encoder
could generate and predict the watermark. Unfortunately, the
necessary hardware for generating such codes is not generally
available [21]. Besides, if the decoder has to generate the same
code to retrieve the encoded information, being truly random,
the same code cannot be obtained. Instead, Pseudonoise se-
quences (PN) are used to resemble the random behaviour.

TABLE I
COMPARISON OF PN FAMILY SETS

Type Length
(l)

Maximum correlation
bound

Family
size

Normalized linear
complexity

Gold 2n − 1 2(n+1)/2 − 1 or
2(n+2)/2 − 1

l + 2
2n

2n−1
∼= 0

Small-
Kasami

22n−1
√
l

√
l

1.5n
22n−1

∼= 0

Large
Kasami

24n+2− 1 2
√
l l×

√
l

2n
22n−1

∼= 0

Randomness is an ensemble property and cannot be
achieved in a single sequence [22]. If an ensemble of PN
codes are attempted to be encoded on the same data stream
(either one data stream or an aggregated data stream such as
moving average [23]), two other properties are need: high auto-
correlation of a PN code and the low cross-correlation between
any two PN codes in the same code family or set. Auto-
correlation refers to the degree of correspondence between a
code and a phase-shifted replica of itself. The cross-correlation
is defined between two codes and represents the degree of
agreements and disagreements between them.

An ensemble of periodic PN sequences with low off-peak
auto-correlation and cross-correlation can be generated using
maximal length sequences or m-sequences [22]. For example,
in [24], an ensemble of l PN codes are shifted versions of a
primitive m-sequence. Nearly n bits can be encoded through
the phase, i.e., the number of spatial shifts (with a cyclic
wrap-around), of a l = 2n − 1. For increasing the number of
possible PN codes, more primitive PN codes with low cross-
correlation can be used. Two of known ensembles of such are
Gold and Kasami [23]. Gold is a set of 2n + 1 sequences
of length l = 2n − 1, (n 6= 4) whose cross-correlation are
three valued. For n odd, the values are optimal and bounded
by 2(n+1)/2 − 1. Kasami codes of length l = 2n − 1 only
exist for even values of n. There are two classes of Kasami
sequences namely Small set and Large set. The Small set has
better correlation properties compared to the Gold and Large
set. The summary of the described PN codes is listed in Table
I. Linear complexity in this table refers to the security of PN
codes against unauthorised detection.

To the best of our knowledge, there is no related work
that makes use of digital watermarking for obfuscation of IoT
data. The only similar work in a non-IoT setting has been
proposed recently by Vlachos et al. [25] for right protection
and data obfuscation of trajectory datasets. The proposed
technique guarantees the preservation of hierarchical clustering
operations after watermark insertion that is necessary for
distance-based mining applications.

C. Contextualisation of IoT Data
In the IoT literature, context is defined as “any information

about the entities (person, place or things) that are relevant to
a given application(s) that can be used to contextualise data
for that given service(s)” [7]. Contextualisation of IoT data for



supporting an IoT application is defined in [7] and involves
the following three steps:
• Context Collection - User context information can be

collected from user’s smart-phone, wearable devices, or
manually provided by the user. Moreover, cloud services
can help to deduce new context information from the
collected context.

• Contextualisation of the IoT data - We contextualise IoT
data based on two main operations including Contextual
Filter and Contextual Aggregation described in detail
in [26]. Contextual Filter, filters the data originating
from IoT devices and services based on the current con-
text. Contextual Aggregation, aggregates the Contextual
Filtered data based on the contextual similarities and
relevance.

III. IOT SECURITY SERVICE

In this paper, we define (security) context as any information
that can describe or impact the disclosure privilege of the
data for the relevant roles, and provide IoT data security
as a service. Our IoT Security Service includes aspects of
confidentiality, controlled disclosure, authentication, and au-
thorization. Its implementation involves using cloud comput-
ing infrastructure and service-oriented computing principles
to provide this service for use by others. In the scope of this
paper, we focus only on a contextualised authentication and
data disclosure control for IoT data. Despite, the architecture is
capable of performing other IoT security services as a service.
The summary of notations that we use in the rest of the paper
is given in Table II.

A. Role-based disclosure privilege model

To explain our IoT Security Service, consider a nested role-
based model of security privileges, where the least privilege
is granted to the individuals located at the most inner region
and the highest belongs to the individuals in the most outer
region. This means an individual at a particular region, have all
privileges of the regions they enclose as well. We denote the
number of privilege regions (PR) by d, where d is the number
of predefined roles in the system. Moreover, each PR has a
unique identifier, denoted as rid, assigned to it. Therefore, a
user with ridk has all the disclosure privileges granted to all
other users within regions rid1 to ridk−1. Please note that,
the region identifiers are only known to the Security Service.

To grant access to data, our IoT Security Service exploits
the knowledge of existing roles for authenticating users (who
interact with the system by issuing queries). Therefore, every
user belongs to a specific PR and the Security Service verifies
this membership via a key that is assigned to every user. If
the user’s key is valid, the associated region id, i.e., rid, is
retrieved to de-obfuscate the query result later.

To further explain our role-based model, we use the fol-
lowing notation: Every region rk is associated with a pair
(keyk, ridk), where keyk is the secret key for all users belong
to that region and rid is as defined above. Secrete keys and
the corresponding region identifiers are generated by taking

TABLE II
NOTATIONS

Symbols Meanings

d number of disclosure privilege regions

rk k − th region index (1 ≤ k ≤ d )

ridk k − th region identifier

keyk The binding key for region ridk
skeyi The session key for user i

Ξ An ensemble of PN sequences with desired correlation
properties

l The lenghth of PN sequence/code

σ The composite template key

rindexo The region index attached to the data object O

ui i-th user/data-requestor

Hash Hash functions, example SHA-1 or MD5

hk,1, hk,2 first half and the second half of the calculated hash for the
region rk

αk Scale factor (watermark amolitude) corresponds to the region
rk

puKeyDS The public key of the Data Delivery service
prKeyDS The private key of the Data Delivery service

advantage a known ensemble construction, such as Kasami.
More specifically, the binding key to a region is a PN code
and the associated rid is the spatial shift value that can be
used to generate other orthogonal PN codes as described in
Section II-B. Next, we use these notation to describe in detail
how these values are generated and how the Security Service
can retrieve the associated rids without having access to the
individual keys (i.e. the PN codes).

B. Conceptual Architecture

In the IoT, data typically is captured from various Internet-
connected devices such as smart phones, wearable devices, and
sensors. This data is often not protected. Applying traditional
security techniques such as encryption is not feasible due
to resource limitation of the IoT devices. In this paper, we
aim to protect data from such IoT sources with a light-
weight and scalable technique by using contextualisation and
watermarking. Data disclosure control is achieved by a role-
based privilege model described earlier.

Fig. 1, illustrates the conceptual architecture of our novel
role-based data disclosure control. The primary components
of this architecture are contextualisation, security and data
delivery services. We used ConTaaS [7] to Contextual Filter
and Contextual Aggregate the triples based on the their rele-
vancy to the available roles. Contextualisation service deduces
the associated access privilege (i.e. the label rinedxO that
we describe in subsection III-E) for each individual data
based on the privilege ontology1 and the defined security
requirements (e.g. policies defined by a security manager).
Security service consisting of disclosure privilege, data obfus-
cation and watermarking is responsible for providing defined

1Ontology is a formal way of describing taxonomies and defining the
structure of knowledge. Although, description of the privilege ontology is out
of the scope of this paper, we refer to it as a knowledge repository describing
the relation between the privacy-sensitivity of the data and the roles.



policies to contextualisation service, perturbing data and role-
based authentication using watermark, respectively. Finally,
data delivery is in charge of privacy-preserving delivery of
the query result to the users. This conceptual architecture will
be explained in a scenario in IV-A.

C. Data Model

In this paper we employ semantic web standards such as
RDF and SPARQL to model and interchange data. The RDF
format is N -triples [27]. A triple is a statement that describes
data in the form of < Subject, Predicate,Object >. Subject
is the identifier of the entity that the data is describing;
Object is the description of the Subject in terms of the
relation described in Predicate. For example a triple such
as < Patient1, hasHeartrate, 85 >, describes that Patient1
heart-rate was 80. Furthermore, SPARQL is a query language
for RDF triples.

D. Watermark Generation

Following the Security-As-a-Service notion, the watermark
generation and exchange are delivered “as a service” to users
in order to satisfy disclosure privilege requirements. Therefore,
we make the assumption that, there is a trusted third party
that knows only the summation of all shifted keys associated
with all defined roles and thus can retrieve the rid of the
data requester. In contrast, the contextualisation service is not
trusted and therefore, only the obfuscated versions of data are
stored in database (Subsection III-E).

Suppose we have an ensemble of PN sequences of length
l (with low off-peak auto-correlation and cross-correlation),
denoted as Ξ = PN1, PN2, ..., PN|Ξ| . Examples of such
ensembles are Gold and Kasami set. From this set, we choose
a unique sequence PNj(1 ≤ j ≤ |Ξ|) as the key for all
users in region rk . On the server side, the received key is
used to retrieve the associated ridk. Recall this number is an
integer value to shift the chosen PNj and should be less the
PN length i.e. ridk < l; otherwise, the shifted PN codes will
not be unique (because of the cyclic wrap-around). This value
should be retrieved before granting data access to the user.

Apart from the PN codes which are identical for users
in the same region, every user obtains a session key that
makes the de-obfuscation process dependent on the his/her
unique credentials and therefore enhances the security of our
technique. This session key is generated by Security Service
and exchanged using a secure exchange protocol such as
SSL/TLS. We denote the session key for user i by skeyi.

The process for retrieving region ids (rids) is equivalent to
de-spreading of the secret PN code (keys). This is done by a
correlation operation between the template PN sequence and
the received PN code from the user. The underlying principle
behind decoding process is based on the observation that if in
a cross-correlation between an embedded PN sequence and a
template, the two differ only by a shift, then the correlation
peak will be shifted by that amount. More detailed information
about decoding process can be found here [23].

The template sequence, σ is a composite PN sequence
obtained from the summation of several shifted versions of
the original PN codes that are assigned to different regions,
i.e. σ =

∑d
i=1 shift(PNi, ridi) , where shift() represent

a spatial shift with cyclic wrap around. Then, the periodic
correlation is performed as ρ(τ) =

∑l−1
j=1 σ(j)PNi(j + τ).

If PNi is the correct key, the correlation values (ρ) reveal a
significant peak at the position corresponds to ridi. This value
is passed to the data delivery service to de-obfuscate the data
prior to sending it back to the user. It is clear that, if the key is
not valid, then the retrieved rid will be incorrect which means
the original information cannot be retrieved successfully.

Our proposed disclosure control has three main advantages:
• First, the PN codes can be generated on the fly in the most

compact Linear Feedback Shift Register’s using FPGA
which is a lightweight and cost-effective approach.

• Second, storing one composite key instead of individual
keys eases the key management burden at the server
end and makes our scheme more scalable compared to
storing different keys for different users. This additionally
increases the security of our scheme, if Security Service
is compromised.

• Third, the use of session keys affords us the ability to
have a fine-grained disclosure privilege for authenticated
users.

E. Data Obfuscation

Before explaining the obfuscation process, it is important to
remember, after contextualisation a hierarchy of data is built
upon desirable privilege. For this purpose a set of privilege
policies are required such as ‘The ECG data can only be
accessed by Doctors’, or ‘The blood pressure data can be
accessed by Nurses and Doctors’. Based on these policies and
the role-based privilege model, the contextualisation service
attaches a tag to the data. We assume, for every data object
O, the region index rindexO is attached to that datum.

Based on this assumption, the data storage might be out-
side of the trust surface, therefore we modify the original
values using an obfuscation function (OF) in a way that
only the authenticated users with the right privilege could
de-obfuscate data and retrieve the original values. In the
literature, there are many OF for this purpose. As already
discussed in Section II, random noise addition generated from
a probabilistic distribution such as Laplacian is a possible
candidate for OF. However, the use of truly random numbers
makes the de-obfuscation process non-reversible. Since here
we are concerned with highly sensitive biomedical data, a
reversible OF is desired. Therefore, here, a deterministic OF
by means of digital watermarking techniques is used to provide
a reversible obfuscation transformation.

We take advantage of an additive watermarking approach,
whereby the obfuscated data is simply constructed by adding
a scaled watermark to the data. Following our notations,
the watermarked data is obtained as Ow = O + scale(w).
Traditionally, scale() updates the amplitude of the watermark
w to make it imperceptible from the host data. In contrast,



TABLE III
OBFUSCATION PARAMETER TABLE

region roles region id scaling first half second half
index of hash of hash

1 role 1 rid1 α1 h1,1 h1,2

2 role 2 rid2 α1 h1,1 h1,2

. . . . . .

k-1 role k-1 ridk−1 αk−1 hk−1,1 hk−1,2

k role k ridk αk hk,1 hk,2

k+1 role k+1 ridk+1 αk+1 hk+1,1 hk+1,2

. . . . . .

. . . . . .

d role d ridd αd hd,1 hd,2

here, we can embed watermarks with larger scale values if
better obfuscation is desired.

In our design, we add two more amendments to the above
watermark encoding to make the obfuscation technique de-
pendable on the users’ privileges. First, the embedded water-
mark is a keyed hashed value of the retrieved rid with the
composite key σ. This makes the data obfuscation dependable
on the Security Service and prevents calculation of the hash,
if an adversary intercepts the rid. Second, the watermark
amplitude is tuned in such a way that for data with higher
sensitivity, the scale factor is larger. The rationale behind this
is that, such data presents more sensitive information about the
individuals and therefore the privacy is much more important
compared to the data that can be accessed with the lower
disclosure privilege. Since, our de-obfuscation technique is
reversible, we can add a large amplitude of watermark to the
original data and later on subtract the added value to retrieve
the original data. Again these values should be selected a prior
based on the desired privilege policies.

In summary, the obfuscated or watermarked data object
is generated as Ow = O + αk × decimal(Hash(ridk, σ)),
where αk is the associated scale factor for the region rk and
decimal() returns the decimal hash value. Once a query is
issued, the Security Service retrieves the parameters for that
user and passes it to the data delivery service to de-obfuscate
the data. However, this approach still has one problem. For
those data that can be accessed from multiple regions, the data
delivery server cannot distinguish the obfuscating parameters
and consequently, invalid values will be reported.

For solving this problem, we change the watermark value
and store an extra table (such as Table III) in the Security
Service. First the above hash value, Hash(ridk, σ) is split
into half, say hk,1 and hk,2. The data is, then, obfuscated
by the scaled version of the first half i.e. Ow = O +
αk × decimal(hk,1). The second half, hk,2, replaces the
original region index indexO, that is later used to find out the
disclosure privilege of that data. Therefore, the obfuscated data
can be represented by the quadruplet < S,P,Ow, hk,2 >. This
means for data de-obfuscation, the associated values including
rid, α, h1, and h2 are required that needs to be stored.

Fig. 2. Sequence diagram of data delivery

F. Data Delivery

At this step, the query server de-obfuscates the data based
on the received parameters from the Security Service. Then,
the data delivery service re-obfuscates data using the session
key before sending the result to the user. From the technical
standpoint, this not only limits data disclosure at rest, but also
while being transmitted to the data requester,

Assume, a user ui belongs to the region rk. The entire
process is described step-by-step as follows:

1) The user ui sends its query for data object O i.e.
(< S,P, ?O >), along with its secret (PN code) to the
Security Service,

2) If the key is correct, the Security Service retrieves the
associated ridk and creates a session key, say skeyi,
and sends back a copy of the session key to the user.
Also another copy of the session key is created us-
ing the public key of the data delivery service ( i.e.
enc(skeyi, puKeyDS), where enc() is an encryption
function) and is sent along with the query to the Data
Delivery Service,

3) The Data Delivery Service sends the corresponding
rindexO for the requested Object O to the Security
Service, which is effectively hk,2.

4) The Security Service looks up into the Obfuscation Pa-
rameter table for the equivalent hash value and retrieves
the corresponding hj,1, αj values. Then these values are
again encrypted with the public key of the data delivery
service and sent to the data delivery service,

5) The Data Delivery Service, consequently decrypts the
received information using its private key prKeyDS
to extract the scaling factor and the watermark and
subtracts the multiplication of the two values from the
obfuscated data,

6) The data delivery service re-obfuscates the data using
the session key, before sending it to the user. For this
purpose, he hash value of the session key is calculated
and its decimal value is added to the original data,

7) Finally, the user ui de-obfuscates the data by subtracting
the hash value of the session key and obtains the original
data.

The aforementioned steps are illustrated in the Fig. 2.



IV. IMPLEMENTATION SCENARIO

Smart-health is a new paradigm of using the IoT and
recent technologies such as wireless sensor networks and
cloud computing towards delivering smart health care services
to the citizens [28]. These services require accessing to the
private and privacy-sensitive data from the citizens. However,
protecting the privacy is challenging due to the limitations in
processing capabilities of IoT devices on the one hand, and the
enormous amount of data should be considered on the other
hand.

The experimental scenario of this paper is an extension
of the scenario described in [7]. Consider the outbreak of
an epidemic disease such as Ebola. In order to control the
disease, it is necessary to check and monitor the symptoms
for all the citizens continuously and as quickly as possible.
In our experimental scenario, not only the medical staffs
are contributing in measurement of the symptoms but also
smart devices (e.g. smart watch) can send data to the IoT
applications. We have defined four roles with different access
privileges as shown in Fig. 3.

Fig. 3. Role-based privilege model for the health-care scenario.

A. Scenario

Contextual Filter will exclude irrelevant data for the queries.
For example, if there is no interest to people who never
had a heart-rate more or less than a particular value or
people without any hear-rate record, those people will not be
considered for any queries. Next, Contextual Aggregation will
generate aggregated nodes as described in [7]. For example,
if all the queries that were interested for heart-rate more than
a particular value also were interested for blood pressure less
than a particular value.

B. Test-bed

The experimental test-bed has been developed on Amazon
EC2, “M4 General Purpose” instance, with 32 GB RAM
and 8 vCPU. Our synthesized RDF Dataset consists of data
such as blood pressure, heart-rate, and location of 500 users
captured every 10 minutes for 15 days while data regarding the
insurance information and citizenship assumed to be entered
into the database via medical or administration staff.

V. EVALUATION

A. Performance

Fig. 4 shows the results of a performance evaluation we
conducted over 16 days of data collection from patients. The
collected data are stored in form of triplets represented on
the horizontal axis of the graph. For example, 7200 samples
were collected on the first day, performing contextual filtering
took 66 ms, while contextual aggregation took only 11 ms.
Similarly, watermark insertion took 1996 ms, watermarking
combined with contextual filtering 80 ms, and watermark-
ing combined with contextual aggregation only 18 ms. The
experimental data clearly reveal the lightweightness of our
watermarking technique, the effectiveness of contextualisation
technique and the superiority of their combination (only 284
ms for processing 1152000 data points).

B. Remaining issues

From the security standpoint, our method has two potential
problems. First, the usage of an ensemble of PN sequences as
authentication keys resolves the problem of generating keys
for computationally-bounded IoT devices, but it opens up the
possibility of a Brute-force attack for guessing the secret rid
values. Here, we used Small Kasami that gives us 22n − 1
possible values for region IDs that is not many. However, this
problem can be solved by using a more secure PN codes with
larger set size, such as Moreno-Tirkel sequences [29], without
changing the proposed technique.

The second problem is related to the watermark amplitudes
for data obfuscation process i.e. α values. Here, we used a
constant value to amplify the embedded watermark that makes
our scheme vulnerable against the Wiener attack in which
an attacker can remove the watermark by using statistical
estimation. In order to combat this attack, the power spectrum
of watermark should resembles that of the data, named here
[30] as power-spectrum condition. This feature can be easily
added to our existing model during the contextualisation
process and makes our watermarks robust against this attack.
We are already working on this improvement, but this is
outside the scope of this paper.

VI. CONCLUSION

In this work, we introduced a role-based disclosure con-
trol technique suitable for any IoT application in which the
dissemination of IoT data may violate the privacy of the
individuals whose IoT devices contributed such data. Even if
privacy preservation approaches have already been proposed
for some specific IoT applications, a comprehensive architec-
ture, general and flexible enough to deal with IoT constrained
environments in a real setting, is still missing. For this purpose,
we combined digital watermarking with contextualisation into
an unified architecture that fulfills the function of a Security-
as-A-Service. This service contextualises sensitive data to
reduce data size prior to data obfuscation. Reversibility of the
obfuscated data is also provided to users with the appropriate
disclosure privileges. Therefore, only the perturbed versions
of the original data is available to the public. When a query



Fig. 4. Query Response Time

is issued, the de-obfuscation parameters are retrieved based
on the provided credentials to retrieve original data values.
In order to protect the original data during a transmission,
such data is re-obfuscated so that only an authorized user
can retrieve the original data. This way, the sensitive data can
be protected while being transmitted and at rest. The results
confirmed that the computational complexity of our proposed
disclosure control is very modest.
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